organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[Bis(2-aminoethyl)amino]ethanaminium chloride dichloromethane solvate

Moritz M. Reichvilser, Tanja Ossiander, Peter Klüfers* and Peter Mayer

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 20 November 2008; accepted 25 November 2008

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.111; data-to-parameter ratio = 24.6.

In the title compound, $C_6H_{19}N_4^+ \cdot Cl^- \cdot CH_2Cl_2$, the non-H atoms of the ammonium ion show non-crystallographic C_3 symmetry. The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (five $N-H\cdots$ Cl and two $C-H\cdots$ Cl), which form layers parallel to the (100) plane. Two N-H...N bonds also occur.

Related literature

For the crystal structure of *N*,*N*,*N*-tris(2-ammonioethyl)amine trichloride, see: Rasmussen & Hazell (1963); Hazell & Rasmussen (1968); Ilioudis et al. (2000).

Experimental

Crystal data

 $C_6H_{19}N_4^+ \cdot Cl^- \cdot CH_2Cl_2$ $M_r = 267.63$ Monoclinic, $P2_1/c$ a = 12.1512 (4) Å b = 8.5686 (2) Å c = 13.5497 (3) Å $\beta = 104.273 \ (2)^{\circ}$

V = 1367.23 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.65 \text{ mm}^{-1}$ T = 200 (2) K $0.17 \times 0.17 \times 0.17~\mathrm{mm}$

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: none 10639 measured reflections

3130 independent reflections 2431 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	127 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
3130 reflections	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H1···Cl1	0.94	2.54	3.3897 (17)	151
$N2-H2\cdots Cl1^{i}$	0.97	2.58	3.4402 (16)	148
N3−H3···Cl1 ⁱⁱ	0.88	2.57	3.4013 (16)	159
N3-H4···Cl1	0.96	2.55	3.4203 (17)	150
N4-H5···Cl1	0.90	2.42	3.2562 (15)	153
N4-H6···N3 ⁱⁱⁱ	0.93	1.96	2.862 (2)	165
$N4-H7\cdots N2^{iv}$	1.02	1.73	2.746 (2)	171
C4−H14···Cl1 ⁱⁱⁱ	0.99	2.82	3.7014 (18)	149
$C7-H21\cdots Cl1^{i}$	0.99	2.54	3.482 (3)	160

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2};$ (iii) -x + 1, -y, -z; (iv) -x + 1, -y + 1, -z.

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 200) and Mercury (Macrae et al., 2006).

MMR thanks the Fonds der Chemischen Industrie (FCI) for a PhD fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2162).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hazell, R. G. & Rasmussen, S. E. (1968). Acta Chem. Scand. 22, 348-350.
- Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787-798.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Rasmussen, S. E. & Hazell, R. G. (1963). Acta Chem. Scand. 17, 832-842.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o2500 [doi:10.1107/S1600536808039652]

2-[Bis(2-aminoethyl)amino]ethanaminium chloride dichloromethane solvate

M. M. Reichvilser, T. Ossiander, P. Klüfers and P. Mayer

Comment

The title compounds molecular structure is shown in Fig. 1. The ammonium ion does not exhibit any crystallographic symmetry but, excluding the hydrogen atoms, it shows non-crystallographic C_3 symmetry.

It has to be assumed that the chloride ion is formed by a nucleophilic substitution reaction between a part of the tris(2aminoethyl)amine and the solvent dichloromethane.

In the crystal structure, hydrogen bonds between the ammonium and chloride ions and the solvate molecule form twodimensional networks parallel to the (100) plane (see Fig. 2). The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (see Fig. 3).

Experimental

Crystals of the title compound were obtained from a solution of tris(2-aminoethyl)amine (0.15 g, 5.0 mmol) and trimethylborate (0.52 g, 5.0 mmol) in dichloromethane (10 ml) upon slow evaporation of the solvent at room temperature.

Refinement

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 0.99 Å) and treated as riding on their parent atoms $[U_{iso}(H) = 1.2U_{eq}(C)]$. N-bonded H atoms were assigned from difference maps and treated as riding on their parent atoms $[U_{iso}(H) = 1.2U_{eq}(N)]$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. The packing and the hydrogen-bonded layers in the title compound, viewed along [0 1 0].

Fig. 3. Hydrogen bonding to Cl1. [Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, -1/2 + y, 1/2 - z; (iii) 1 - x, -y, -z.]

2-[Bis(2-aminoethyl)amino]ethanaminium chloride dichloromethane solvate

Crystal data

$C_6H_{19}N_4^+ \cdot Cl^- \cdot CH_2Cl_2$	$F_{000} = 568$
$M_r = 267.63$	$D_{\rm x} = 1.300 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 17190 reflections
a = 12.1512 (4) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 8.5686 (2) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 13.5497 (3) Å	T = 200 (2) K
$\beta = 104.273 \ (2)^{\circ}$	Block, colourless
V = 1367.23 (6) Å ³	$0.17\times0.17\times0.17~mm$
Z = 4	

Data collection

Nonius KappaCCD area-detector diffractometer	3130 independent reflections
Radiation source: rotating anode	2431 reflections with $I > 2\sigma(I)$
Monochromator: MONTEL, graded multilayered X-ray optics	$R_{\text{int}} = 0.030$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 200(2) K	$\theta_{\min} = 3.2^{\circ}$
φ and ω scans	$h = -15 \rightarrow 15$
Absorption correction: none	$k = -11 \rightarrow 10$
10639 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_0^2) + (0.0471P)^2 + 0.7878P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
3130 reflections	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$

127 parameters

 $\Delta \rho_{min} = -0.57 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on all data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.28042 (13)	0.26045 (16)	-0.00985 (11)	0.0291 (3)
N2	0.40189 (14)	0.52948 (18)	0.11822 (12)	0.0355 (4)
H1	0.4350	0.4312	0.1169	0.043*
H2	0.3888	0.5495	0.1846	0.043*
N3	0.36750 (14)	0.01291 (18)	0.14123 (12)	0.0347 (4)
H3	0.3757	-0.0326	0.2006	0.042*
H4	0.4111	0.1080	0.1487	0.042*
N4	0.48946 (13)	0.20788 (18)	-0.07457 (11)	0.0324 (3)
Н5	0.4973	0.2055	-0.0066	0.039*
H6	0.5435	0.1373	-0.0843	0.039*
H7	0.5240	0.3119	-0.0890	0.039*
C1	0.22269 (16)	0.3910 (2)	0.02691 (15)	0.0362 (4)
H8	0.2052	0.3602	0.0918	0.043*
Н9	0.1497	0.4113	-0.0232	0.043*
C2	0.29173 (17)	0.5407 (2)	0.04382 (15)	0.0364 (4)
H10	0.3049	0.5746	-0.0222	0.044*
H11	0.2462	0.6228	0.0666	0.044*
C3	0.28825 (16)	0.2874 (2)	-0.11498 (13)	0.0342 (4)
H12	0.3085	0.3979	-0.1226	0.041*
H13	0.2132	0.2678	-0.1621	0.041*
C4	0.37594 (16)	0.1831 (2)	-0.14384 (13)	0.0343 (4)
H14	0.3534	0.0725	-0.1405	0.041*
H15	0.3792	0.2058	-0.2147	0.041*
C5	0.22065 (16)	0.1131 (2)	-0.00284 (14)	0.0355 (4)
H16	0.2424	0.0354	-0.0487	0.043*
H17	0.1378	0.1309	-0.0268	0.043*
C6	0.24633 (17)	0.0466 (2)	0.10427 (14)	0.0362 (4)
H18	0.2230	0.1224	0.1504	0.043*
H19	0.2022	-0.0505	0.1044	0.043*
C12	0.03789 (6)	0.73386 (9)	0.38860 (6)	0.0703 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

Cl3 C7 H20 H21 Cl1	0.07369 (8) 0.1040 (2) 0.0780 0.1871 0.60198 (4)	0.62211 0.7685 (2 0.8702 0.7746 0.24526	(16) 0.19 3) 0.28 0.25 0.31 (5) 0.16	725 (8) 95 (2) 74 78 8855 (3)	0.1163 (4) 0.0630 (7) 0.076* 0.076* 0.03439 (14)	
Atomic disp	lacement parameter	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0323 (8)	0.0290 (7)	0.0272 (7)	-0.0003 (6)	0.0093 (6)	0.0019 (6)
N2	0.0442 (9)	0.0298 (8)	0.0320 (8)	0.0009 (7)	0.0082 (7)	-0.0019 (6)
N3	0.0409 (9)	0.0321 (8)	0.0333 (8)	0.0032 (7)	0.0132 (7)	0.0056 (6)
N4	0.0375 (8)	0.0331 (8)	0.0276 (7)	0.0026 (7)	0.0101 (6)	0.0001 (6)
C1	0.0329 (10)	0.0361 (10)	0.0412 (10)	0.0026 (8)	0.0123 (8)	-0.0008 (8)
C2	0.0398 (10)	0.0306 (9)	0.0403 (10)	0.0042 (8)	0.0127 (8)	0.0019 (8)
C3	0.0372 (10)	0.0371 (10)	0.0285 (9)	0.0024 (8)	0.0082 (8)	0.0051 (7)
C4	0.0394 (10)	0.0344 (10)	0.0296 (9)	-0.0016 (8)	0.0095 (8)	-0.0031 (7)
C5	0.0350 (10)	0.0347 (10)	0.0355 (9)	-0.0069 (8)	0.0065 (8)	0.0000 (8)
C6	0.0383 (10)	0.0352 (10)	0.0382 (10)	-0.0026 (8)	0.0151 (8)	0.0037 (8)
Cl2	0.0586 (4)	0.0835 (5)	0.0745 (4)	0.0079 (3)	0.0269 (3)	0.0044 (3)
C13	0.0780 (6)	0.1752 (11)	0.1012 (7)	-0.0436 (6)	0.0326 (5)	-0.0730 (7)
C7	0.0437 (13)	0.0711 (17)	0.0787 (18)	-0.0073 (12)	0.0239 (13)	-0.0116 (14)
Cl1	0.0357 (3)	0.0366 (3)	0.0302 (2)	-0.00045 (1	8) 0.00691 (17)	-0.00011 (17)

Geometric parameters (Å, °)

N1—C3	1.469 (2)	С2—Н10	0.9900
N1—C1	1.471 (2)	С2—Н11	0.9900
N1—C5	1.471 (2)	C3—C4	1.514 (3)
N2—C2	1.467 (2)	С3—Н12	0.9900
N2—H1	0.9358	С3—Н13	0.9900
N2—H2	0.9660	C4—H14	0.9900
N3—C6	1.462 (2)	C4—H15	0.9900
N3—H3	0.8776	C5—C6	1.518 (3)
N3—H4	0.9638	С5—Н16	0.9900
N4—C4	1.480 (2)	С5—Н17	0.9900
N4—H5	0.9019	С6—Н18	0.9900
N4—H6	0.9265	С6—Н19	0.9900
N4—H7	1.0244	Cl2—C7	1.751 (3)
C1—C2	1.519 (3)	Cl3—C7	1.745 (3)
С1—Н8	0.9900	С7—Н20	0.9900
С1—Н9	0.9900	С7—Н21	0.9900
C3—N1—C1	111.05 (14)	C4—C3—H12	109.2
C3—N1—C5	110.38 (14)	N1—C3—H13	109.2
C1—N1—C5	110.28 (14)	C4—C3—H13	109.2
C2—N2—H1	111.7	H12—C3—H13	107.9
C2—N2—H2	107.2	N4—C4—C3	110.89 (15)
H1—N2—H2	110.4	N4—C4—H14	109.5

C6—N3—H3	106.2	C3—C4—H14	109.5
C6—N3—H4	110.5	N4—C4—H15	109.5
H3—N3—H4	110.1	C3—C4—H15	109.5
C4—N4—H5	119.5	H14—C4—H15	108.0
C4—N4—H6	113.5	N1-C5-C6	113.30 (15)
H5—N4—H6	103.3	N1—C5—H16	108.9
C4—N4—H7	111.5	С6—С5—Н16	108.9
H5—N4—H7	105.6	N1—C5—H17	108.9
H6—N4—H7	101.7	С6—С5—Н17	108.9
N1—C1—C2	113.68 (15)	H16—C5—H17	107.7
N1—C1—H8	108.8	N3—C6—C5	110.71 (15)
С2—С1—Н8	108.8	N3—C6—H18	109.5
N1—C1—H9	108.8	С5—С6—Н18	109.5
С2—С1—Н9	108.8	N3—C6—H19	109.5
H8—C1—H9	107.7	С5—С6—Н19	109.5
N2-C2-C1	115.12 (15)	H18—C6—H19	108.1
N2—C2—H10	108.5	Cl3—C7—Cl2	111.83 (15)
C1-C2-H10	108.5	Cl3—C7—H20	109.2
N2—C2—H11	108.5	Cl2—C7—H20	109.2
C1—C2—H11	108.5	Cl3—C7—H21	109.2
H10-C2-H11	107.5	Cl2—C7—H21	109.2
N1—C3—C4	112.06 (15)	H20—C7—H21	107.9
N1—C3—H12	109.2		
C3—N1—C1—C2	-69.7 (2)	N1—C3—C4—N4	-58.4 (2)
C5—N1—C1—C2	167.57 (15)	C3—N1—C5—C6	158.47 (16)
N1—C1—C2—N2	-59.7 (2)	C1—N1—C5—C6	-78.5 (2)
C1—N1—C3—C4	162.77 (15)	N1—C5—C6—N3	-60.7 (2)
C5—N1—C3—C4	-74.60 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H1···Cl1	0.94	2.54	3.3897 (17)	151
N2—H2···Cl1 ⁱ	0.97	2.58	3.4402 (16)	148
N3—H3····Cl1 ⁱⁱ	0.88	2.57	3.4013 (16)	159
N3—H4…Cl1	0.96	2.55	3.4203 (17)	150
N4—H5…Cl1	0.90	2.42	3.2562 (15)	153
N4—H6…N3 ⁱⁱⁱ	0.93	1.96	2.862 (2)	165
N4—H7···N2 ^{iv}	1.02	1.73	2.746 (2)	171
C4—H14…Cl1 ⁱⁱⁱ	0.99	2.82	3.7014 (18)	149
C7—H21···Cl1 ⁱ	0.99	2.54	3.482 (3)	160
Symmetry adday (i) $w \mid 1 \mid w \mid 1/2$	$= \pm 1/2$, (ii) $= \pm 1/2$ $= \pm 1/2$		(iv) w 1 w 1 -	

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z.

Fig. 1

